Engineering Fomulas

Belt Length Formula

Length $=$ Dia + Dia $\times 1.65+2(C D)$
$C D=\frac{\text { Length }-D+d(1.65)}{2}$
2

FPM, VELOCITY = . $262 \times$ DIA X RPM		FPM/VELOCITY
$\text { RPM }=\frac{\text { FPM (Velocity) }}{.262 \times \text { Dia }}$		RPM
$\text { Dia. }=\frac{\text { FPM (Velocity) }}{.262 \times \text { RPM }}$		DIAMETER
$\mathrm{Hp}=\frac{\text { Force } X \text { Velocity }}{33,000}$		HORSEPOWER
$H p=\begin{gathered} \text { Torque } X \text { RPM } \\ 63,025 \end{gathered}$		HORSEPOWER
$\left.\begin{array}{c} \text { Force, } \\ \text { Torque }=\text { Pull, } \\ \text { Tension } \end{array}\right\} \times \text { Radius }$		TORQUE
$\text { Torque }=\frac{\mathrm{Hp} \mathrm{X} \mathrm{63,025}}{\text { RPM }}$		TORQUE
$\mathrm{EF}=\frac{\mathrm{Hp} \mathrm{X} \mathrm{33,000}}{\text { Velocity (FPM) }}$		EFFECTIVE FORCE
$\mathrm{Te}=\frac{\mathrm{Hp} \times 63,025}{\text { RPM X Radius }}$		$\begin{aligned} & \text { EFFECTIVE } \\ & \text { TENSION (Te) } \end{aligned}$
$\mathrm{Te}=\frac{\text { Torque }}{\text { Radius }}$	$\mathrm{Te}=\frac{\mathrm{Hp} \times 33,000}{\text { Velocity }}$	$\begin{aligned} & \text { EFFECTIVE } \\ & \text { TENSION (Te) } \end{aligned}$

Please Note: Torque is in INCH LBS

